UNDERSTANDING
LINE DRAWINGS OF
SGENES WITH SHADOWS

2.1 INTRODUCTION

How do we ascertain the shapes of unfamiliar objects? Why do we so seldom
confuse shadows with real things? How do we “factor out” shadows when
looking at scenes? How are we able to see the world as essentially the same
whether it is a bright sunny day, an overcast day, or a night with only
streetlights for illumination? In the terms of this paper, how can we recognize
the identity of Figs. 2.1 and 2.2? Do we use learning and knowledge to
interpret what we see, or do we somehow automatically see the world as
stable and independent of lighting? What portions of scenes can we
understand from local features alone, and what configurations require the use
of global hypotheses?
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Fig. 2.1

In this essay I describe a working collection of computer programs
which reconstruct three-dimensional descriptions from line drawings which are
obtained from scenes composed of plane-faced objects under various lighting
conditions. The system identifies shadow lines and regions, groups regions
which belong to the same object, and notices such relations as contact or lack
of contact between the objects, support and in-front-of/behind relations
between the objects as well as information about the spatial orientation of
various regions, all using the description it has generated. '

2.1.1 Descriptions

The overall goal of the system is to provide a precise description of a plausible
scene which could give rise to a particular line drawing. It is therefore
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important to have a good language in which to describe features of scenes.
Since I wish to have the program operate on unfamiliar objects, the language
must be capable of describing such objects. The language I have used is an
expansion of the labeling system developed by Huffman' in the United States
and Clowes? in Great Britain.

The language employs labels which are assigned to line segments and
regions in the scene. These labels describe the edge geometry, the connection
or lack of connection between adjacent regions, the orientation of each region
in three dimensions, and the nature of the illumination for each region
(illuminated, projected shadow region, or region facing away from the light
source). The goal of the program is to assign a single label value to each line
and region in the line drawing, except in cases where humans also find a
feature to be ambiguous.

This language allows precise definitions of such concepts as supported
by, in-front-of, behind, rests-against, is-shadowed-by, is-capable-of-supporting,
leans-on, and others. Thus, if it is possible to label each feature of a scene
uniquely, then it is possible to directly extract these relations from the
description of the scene based on this labeling.

2.1.2 Junction Labels

Much of the program’s power is based on access to lists of possible line label
assignments for each type of junction in a line drawing. Depending on the
amount of computer memory available, it may either be desirable to store the
complete lists as compiled knowledge or to generate the lists when they are
needed. In my current program the lists are for the most part precom-
piled.

The composition of the dictionary is interesting in its own right. While
some junction types require many dictionary entries, others require relatively
few. Moreover, in some cases local information about the relative brightness
of the surrounding regions and about the directions of the lines may severely
limit the number of relevant dictionary entries for any particular junction. In
other cases such information has little effect.

Figure 2.3 shows all the junction types which can occur in the universe
of the program. The dictionary is arranged by junction type, and a standard
ordering is assigned to all the line segments which make up junctions (except
FORKs and MULTIs). There is a considerable amount of local information
which can be used to select a subset of the total number of junction
configurations which are consistent with physical reality. '

For example the program can use local region brightness and line
segment direction to preclude the assignment of certain labels to lines. If it
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knows that one region is brighter than an adjacent region, then the line which
separates the regions can be labeled as a shadow region in only one way.
There are other rules which relate region orientation, light placement and
region illumination as well as rules which limit the number of labels which can
be assigned to line segments which border the support surface for the scene.
The program is able to combine all these types of information in finding a list
of appropriate labels for a single junction.

2.1.3 Combination Rules

Combination rules are used to select the label, or labels, which correctly
describe the scene features that could have produced each junction in the
given line drawing. The simplest type of combination rule merely states that a
label is a possible description for a junction if and only if there is at least one
label which “matches” it assigned to each adjacent junction. Two junction
labels “match” if and only if the line segment which joins the junctions gets
the same interpretation from both of the junctions at its ends.

I thought at the outset of my work that it might be necessary to
construct models of hidden vertexes or features which faced away from the
eye in order to find unique labels for the visible features. The difficulty in
this is that unless a program can find which lines represent obscuring edges, it
cannot know where to construct hidden features, but if it needs the hidden
features to label the lines, it may not be able to decide which lines represent
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obscuring edges. As it turns out, no such complicated rules and constructions
are necessary in general; most of the labeling problem can be solved by a
scheme which only compares adjacent junctions.

2.1.4 Experimental Results

The program computes the full list of dictionary entries for each junction in
the scene, eliminates from the list those labels which can be precluded on the
basis of local -features, assigns each reduced list to its junction, and then a
filtering program computes the possible labels for each line, using the fact that
a line label is possible if and only if there is at least one junction label at each
end of the line which contains the line label. Thus, the list of possible labels
for a line segment is the intersection of the two lists of possibilities
computed from the junction labels at the ends of the line segment. If any
junction label would assign an interpretation to the line segment which is not
in this intersection list, then that label can be eliminated from consideration.
The filtering program uses a network iteration scheme to systematically
remove all the interpretations which are precluded by the elimination of labels
at a particular junction.

Initially I had intended to have a tree search program follow the
filtering program, but to my amazement I found that in the first few scenes I
tried, this program alone found a unique label for each line. Even when I tried
considerably more complicated scenes, there were only a few lines in general
which were not uniquely specified, and some of these were essentially
ambiguous, i.e. I could not decide exactly what sort of edge gave rise to the
line segment myself. The other ambiguities, i.e. the ones which I could resolve
myself, in general require that the program recognize lines which are parallel
or collinear or recognize regions which meet along more than one line
segment and hence require more global agreement.

I have been able to use this system to investigate a large number of line
drawings, including ones with missing lines and ones with numerous
accidentally aligned junctions. From these investigations I can say with some
certainty which types of scene features can be handled by the filtering
program and which require more complicated processing. Whether or not more
processing is required, the filtering system provides a computationally cheap
method for acquiring a great deal of information. For example, in most scenes
a large percentage of the line segments are unambiguously labeled, and more
complicated processing can be directed to the areas which remain ambiguous.

Figure 2.4 shows some of the scenes which the program is able to
handle. The segments which remain ambiguous after its operation are marked
with stars, and the approximate amount of time the program requires to label
each scene is marked below it. The computer is a PDP-10, and the program is
written partially in MICRO-PLANNER? and partially in compiled LISP.
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(48 seconds)

Fig. 2.4 (continued)

2.2 LINE LABELS

In what follows I frequently make a distinction between the scene itself
(objects, table, and shadows) and the retinal representation of the scene as a
two-dimensional line drawing. I will use the terms vertex, edge and surface to
refer to the scene features which map into junction, line and region
respectively in a line drawing.

Our first subproblem is to develop a language that allows us to relate
these two worlds. I have done this by assigning names called labels to lines in
the line drawing, after the manner of Huffman' and Clowes.? Thus, in
Fig. 2.5 line segment J1-J2 is labeled as a shadow edge, line J2-J3 is labeled
as a concave edge, line J3-J14 is labled as a convex edge, line J4-J5 is labeled
as an obscuring edge and line J12-J13 is labeled as a crack edge. Thus, these
terms are attached to parts of the drawing, but they designate the kinds of
things found in the three-dimensional scene.

Pay particular attention to the notation used to label the lines. When I
talk of junction labels I refer to the various possible combinations of such line
labels around a junction. Each such combination is thought of as a particular
junction labeling.

When we look at a line drawing of this sort, we usually can easily
understand what the line drawing represents. In terms of a labeling scheme
either (1) we are able to assign labels uniquely to each line, or (2) we can say
that no such scene could exist, or (3) we can say that although it is
impossible to decide unambiguously what the label of an edge should be, it
must be labeled with one member of some specified subset of the total
number of labels. What knowledge is needed to enable the program to
reproduce such labeling assignments?

»
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2.2.1 System Knowledge

The knowledge of this system is expressed in several distinct forms:

1. A list of possible junction labels for each type of junction geometry

includes the a priori knowledge about the possible three-dimensional
interpretations of a junction.

Selection rules which use junction geometry, knowledge about which
region is the table, and region brightness. These can easily be
extended to use line segment directions to find the subset of the
total list of possible junction labelings which could apply at a
particular junction in a line drawing.

. A program to find the possible labelings; it knows how to

systematically eliminate impossible combinations of labels in a line
drawing and, as such, contains implicit knowledge about topology.
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4. Optional heuristics which can be invoked to select a single labeling
from among those which remain after-all the other knowledge in the
program has been used. These heuristics find a “plausible interpre-
tation if required. For example, one heuristic eliminates interpre-
tations that involve concave objects in favor of ones that involve
convex objects, and another prefers interpretations which have the
smallest number of objects; this heuristic prefers a shadow interpre-
tation for an ambiguous region to the interpretation of the region as
a piece of an object.

In this section I show how to express the first type of knowledge and
give hints about some of the others. A large proportion of my energy and
thought has gone into the choice of the set of possible line labels and the sets
of possible junction labels. In this I have been guided by experiment with my
program, since there are simply too many labels to hand simulate the
program’s reaction to a scene. The program, the set of edge labels, and the
sets of junction labelings have each gone through an evolution involving
several steps. At each step I noted the ambiguities of interpretation which
remained, and then modified the system appropriately.

The changes have generally involved (1) the subdivision of one or more
edge labels into several new labels embodying finer distinctions and (2) the
recomputation of the junction label lists to include these new distinctions. In
each case 1 have been able to test the new scheme to make sure that it solves
the old problems without creating any unexpected new ones. For example,
the initial data base contained only junctions (1) which represented trihedral
vertexes (i.e., vertexes caused by the intersection of exactly three planes at a
point in space) and (2) which could be constructed using only convex objects.

The present data base has been expanded to include all trihedral
junctions and a number of other junctions caused by vertexes where more
than three planes meet.

Throughout this evolutionary process I have tried to systematically
include in the lists every possibility under the stated assumptions. In this part
of the system I have made only one type of judgement: if a junction can
represent a vertex which is physically possible, include that junction in the
data base.

Each type of junction (L, ARROW, FORK) can only be labeled in a
relatively small number of ways; thus if we can say with certainty what the
label for a particular line must be, we can greatly constrain all other lines
which intersect that line segment. As a specific example, if one branch of an
L junction is labeled as a shadow edge, then the other branch must be labeled
as a shadow edge as well.

Moreover shadows are directional, i.e., in order to specify a shadow
edge, it must not only be labeled ‘“shadow” but must also be marked to
indicate which’ side of the edge is shadowed and which side is illuminated.
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Therefore, not only the type of edge but the nature of the regions on each
side can be constrained.

2.2.2 Better Edge Description

So far I have classified edges on the basis of geometry (concave, convex,
obscuring, or planar) and have subdivided the planar class into crack and
shadow subclasses. Suppose that I further break down each class according to
whether or not each edge can be the bounding edge of an object. Objects can
be bounded by obscuring edges, concave edges, and crack edges. Figure 2.6

Interpretation

R1 - An inseparable concave edge; the object of which R1 is a part [OB(R1)] is
R2 the same as [OB(R2)].
R1 - A separable two-object concave edge; if [OB(R1)] is above {OB(R2)] then
R2 < [OB(R2)] supports [OB(R1}1.
R1 ~— . - '

3 Same as abovg, if R1 is above R2, then [OB(R2)] obscures [OB(R1}] or
R2 [OB(R1)] supports [OB(R2)].
R1 — . .

< A separable three-object concave edge; neither [OB(R1)1 nor [OB(R2)]
R2 can support the other.
R1 C

E?+— A crack edge; [OB(R2)] is in front of {OB(R1}] if R1is above R2.

2; ¢ A crack edge; [OB(R2)] supports [OB(R1)] if R1 is above R2.
Separations

- —— —_ -— >\ ——— Y +

-A — A cA — | A

-V — \\'4 C h —_— v+
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Old labeling New labeling

Fig. 2.6 (continued)

shows the results of appending a label analogous to the “obscuring edge”
mark to crack and concave edges. This approach is similar to one first
proposed by Freuder.?

2.2.3 Edge Geometry

The first problem is to find-all possible trihedral vertexes. Huffman observed
that three intersecting planes, whether mutually orthogonal or not, divide
space into eight parts so that the types of trihedral vertex can be
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characterized by the octants of space around the vertex which are filled by
solid material.!

Consider the general intersection of three planes shown in Fig. 2.7.
These planes divide space into octants, which can be uniquely identified by
three-dimensional binary vectors (x y z) where the X, y, and z directions are
specified as shown. The vectors make it easy to describe the various
geometries precisely. I can then generate all possible geometries and
nondegenerate views by imagining various octants to be filled in with solid
material. There are junctions which correspond to having 1, 2,3,4,5,6,0r7
octants filled. Figure 2.8 shows the ten possible geometries that result from
filling various octants; when considered from all possible viewing positions
these ten geometries produce 196 different junction labelings. There are some
other geometries which I have chosen not to use to generate junction labels. I
have not included these geometries because each involves objects which touch
only along one edge, and whose faces are nonetheless aligned, an extremely
unlikely arrangement when compared to the other geometries. (In addition,
some of the geometries are physically impossible unless one or more objects
are cemented together along an edge or supported by invisible means.)

The four geometries recognized by Huffman and Clowes correspond to
my numbers 1, 3, 5, and 7 in Fig. 2.8.

In Fig. 2.9 I show how the 20 different labels with type 3 geometry can
be generated. Basically this process involves taking a geometry from Fig. 2.8,
finding all the ways that the solid segments can be connected or separated,
and finding all the possible views for each partitioning of the octants. To
generate all the possible views one can either draw or imagine the particular
geometry as it appears when viewed from each octant. From some viewing
octants the central vertex is blocked from view by solid material, and
therefore not every viewing position adds new labelings.
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Whenever one of the regions at a junction could correspond to the
background it is marked with an asterisk. A noteworthy fact which I will
exploit later is that only 37 out of the 196 junction labels can occur on the
scene/background boundary.

2.2.4 Shadows at Trihedral Vertexes

To find all the variations of these vertexes which include shadow edges, first
note that vertexes with 1, 2, 6, or 7 octants filled cannot cause shadows such
that the shadow edges appear as part of the vertex. This can be stated more
generally: in order to be a shadow-causing vertex (i.e., a vertex where the
caused shadow edge radiates from the vertex) there must exist some viewing
position for the vertex from which either two concave edges and one convex
edge or one concave edge and two convex edges are visible. Consider the
geometries listed in Fig. 2.8. First, a shadow-causing edge must be convex.
Second, unless there is at least one concave edge adjacent to this convex edge,
there can be no surface which can have a shadow projected onto it by the
light streaming by the convex edge. Finally, a junction which has one convex
and one concave edge must have at least one other convex or concave edge,
since the convex edge and concave edge define at least three planes which
cannot meet at any vertex with only two edges. '

This immediately eliminates 73 out of 196 of the labelings from
consideration. A listing of all the shadow-casting junctions can be constructed
in the manner illustrated in Fig. 2.10; for each potential shadow-causing

To find all the shadow possibilities for a junction, first
imagine it as part of an object, and define a coordinate
system centered at the junction.

Octont -
(o
Octant
T~ am
Octont -
(oon _-7 = _
g Octant -
(on

Then imagine the light source to be in each of the four octants.

Light in (007)
{no shadow edges
visible at vertex)

Fig. 2.10
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Fig. 2.11
This interpretation is prevented by adding L and
R marks to the shadow junctions at A and B
respectively so they no longer can match.

vertex, imagine the light source to be in each of the octants surrounding the
vertex, and record all the resulting junctions. I have marked each shadow edge
which is part of a shadow-causing junction with L or R, according to whether
the arrow on the shadow edge points counterclockwise or clockwise
respectively. '

Any junction which contains either a clockwise shadow edge, marked R,
or a counterclockwise shadow edge, marked L, is defined as a shadow-causing
junction. The reason for distinguishing between the L and R shadow edges is
that this prevents labeling an edge as if it were a shadow caused from both its
vertexes. Without this device there would be no way to prevent Fig. 2.11
from being labeled as shown, with line segment L-A-B interpreted as a
shadow edge. (I use L- as a prefix to mean “line segment(s) joining the
following points™; thus L-A-B is the line segment joining points A and B.)
When the L and R marks are attached to each shadow-causing junction, then
the two shadow-causing junctions at A and B in Fig. 2.11 are no longer
compatible, and therefore the labeling shown will not be considered possible
by the program.

2.2.5 Other Nondegenerate Junctions

I now must describe vertexes which do not fall into the categories I have
described so far. These include (1) all the rest of the combinations that
shadow edges can form and (2) obscured edges.

In Fig. 2.12 I show all the other nondegenerate vertexes which involve
shadow edges, and in Fig. 2.13 I show all the obscured edges.

Later J return to the topic of junction labels and show how it is possible
to also include junctions representing common degeneracies and accidental
alignments as well as junctions with missing lines. In the degenerate cases T do
not include every labeling possibility; instead I include the most common



Understanding Line Drawings of Scenes with Shadows 39




40 The Psychology of Computer Vision

Fig. 2.12 (continued)

occurrences using certain observations about junctions. This is important since
I do not want to limit the program to any particular set of objects.
Fortunately certain types of junctions are rareé no matter what types of

objects are in a scene. For example, many junctions can only occur when the
eye, light, and object are aligned to within a few degrees; when these

These can occur on the scene/background boundary.

This can occur only in the scene interior.

§d

Fig. 2.13
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junctions also contain unusual or aligned edges the combined likelihood of the
junctions is low enough so that they can be safely omitted. It will be shown
that the program can still give information about junctions even if they do
not have proper labelings listed in the data base, provided that not too many
of these occur together in a single scene. This approach is reasonable since any
additional ability to use stereo images or to move the eye or range-finding
ability will allow a program to disambiguate most of these types of features.

2.2.6 A Class of Degeneracies

As a final topic, I include one type of degeneracy which cannot be resolved
by eye motion or stereo. This type of degeneracy results when the light
source is placed in the plane defined by one of the faces of an object. In this
case, shadows are aligned with edges to produce junctions which are
unlabelable given only the normal set of labels described so far. Two examples
of such alignment are shown in Fig. 2.14(a) and (b); all junctions of this type

(b)

(c) (d)

(e)
Fig. 2.14
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are included in the data base except those cases where a shadow edge is
projected directly onto an edge of some other type as in Fig. 2.14(c). These
cases are excluded since they would require me to define new edge labels
which are of very limited value, although there is no technical difficulty in
defining such edges and junctions. I also have excluded, for the time being,
cases like the one shown in Fig. 2.14(d), since the two junctions marked only
appear to be T junctions when the eye is in the plane defined by the light
source and the shadow-causing edge (L-A-B or L-C-D in Fig. 2.14(d). If the
eye is moved to the right, the shadow-causing junctions change to ARROWs
or FORKSs as illustrated in Fig. 2.14(e). In contrast, notice that for the scenes
shown in Figs. 2.14(z) and (b), no change in eye position can make any
difference in the apparent geometry of the shadow-causing junctions.

Later I consider some of the common nontrihedral junctions which the
program ‘is likely to encounter. Some of these require me to define extra
labels.

The grand total number of legal trihedral junctions listed in this section
is 505. The interesting thing in my estimation is that the number of junction
labels, while fairly large, is very small compared to the number of possibilities
if the branches of these junctions were labeled independently; moreover, even

Some common nontrihedral vertexes

Fig. 2.15
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though I have not yet shown how to include various degeneracies and
alignments, the set I have described already is sufficient for most scenes which
a person would construct out of plane-faced objects, provided that he did not
set out to deliberately confuse the program.

Since it may not be obvious what types of common vertexes are
nontrihedral, Fig. 2.15 contains a number of such vertexes. Later sections
show how to handle all of them.

2.3 USING ILLUMINATION

It would be hard to devise a program which could start with a few pieces of
information and eventually yield the list of junctions described in the last
section. Moreover, even if such a program were written (which would indeed
be theoretically interesting), it would be rather pointless to generate labels
with it every time the labels are needed in an analysis. Instead the generating
program could run once and save its results in a table. In this form the
junction labelings table is a sort of compiled knowledge, computed once using
a few general facts and methods. The knowledge in the current program is
almost totally in this compiled form; this is the reason for its rapid operation,
but I have paid a price for this speed in that I require a large amount of
memory (about 14,000 words) to store the junction labelings. (All the rest of
the labeling program occupies only about 4,000 words of memory even
though it is written in MICRO-PLANNER and LISP, neither of which is
particularly noted for space efficiency.)

2.3.1 Region llumination Values

Each region can be labeled as belonging to one of the three following classes:

I-Illuminated directly by the light source.
SP—A projected shadow region; such a region would be illuminated if no
object were between it and the light source.
SS—A self-shadowed region; such a region is oriented away from the
light source.

Given these classes, I can define new edge labels which also include
information about the lighting on both sides of the edge. Notice that in this
way I can include at the edge level (a very local level) information which
constrains all edges bounding the same two regions. Put another way,
whenever a line can be assigned a single label which includes this lighting
information, then a program has powerful constraints for the junctions which
can appear around either of the regions which bound this line.

Figure 2.16 is made up of tables which relate the region 111ummat10n
types which can occur on both sides of each edge type. For example, if either
side of a concave or crack edge is illuminated, both sides of the edge must be
illuminated.
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Fig. 2.16
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Fig. 2.16 (continued)

These tables can be used to expand the set of allowable junction labels;
the new set of labels can have a number of entries which have the same edge
geometries but which have different region illumination values. It was very
easy to write a program to expand the set of labelings; the principles of its
operation are (1) each region in a given junction labeling can have only one
illumination value of the three, and (2) the values on either side of each line
of the junction must satisfy the restrictions in the tables of Fig. 2.16.

There are two extreme possibilities that this partitioning may have on
the number of junction labelings now needed to describe all real vertexes:

1. Each old junction label which has n concave edges, m crack edges, p
clockwis€ shadow edges, q counterclockwise shadow edges, s
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obscuring edges and t convex edges will have to be replaced by
20"6™3P399%8t new junctions, or

2. Each old junction will give rise to only one new junction (as in the
shadow-causing junction cases).

If (1) were true then the partition would be worthless, since no new
information could be gained. If (2) were true, the situation would be greatly
improved, since in a sense all the much more precise information was
implicitly included in the original junctions but was not explicitly stated.
Because the information is now more explicitly stated, many matches between
junctions can be precluded; for example, if in the old scheme some line
segment L1 of junction label Q1 could have been labeled concave, as could
line segment L2 of junction label Q2, a line joining these two junctions
could have been labeled concave. But in the new scheme, if each junction
label gives rise to a single new label, both L1 and L2 would take on one of
the twenty possible values for a concave edge. Unless both L1 and L2 gave
dse to the same new label, the line segment could not be labeled concave
using Q1 and Q2. The truth lies somewhere between the two extremes, but
the fact that it is not at the extreme of (1) means that there is a net
improvement. In Fig. 2.17 I compare the number of labels before and after

Total number of labels in data base for each junction type
Number of labels Number of labels

Junction before adding region including region

type ilumination illumination

L 24 92

ARROW 24 86

T 91 623

FORK ‘ 116 4 826

PEAK 10 10

K 42 213

X 129 435

XX 40 128

MULTI 96 160

KA 20 20

KX 60 76

KXX . 25 121

SPECIAL 40 466

Totals 717 3,256

Fig. 2.17




Understanding Line Drawings of Scenes with Shadows 47

Background Scene

Can be labeled only in one of the following ways:

Fil I{SP 1SS 1} 1fsP  1|]SP 1{SP
R L

Fig. 2.18

adding region illumination information. Although there are 505 distinct
labelings before adding illumination, the actual total number of labels shown
in larger. This is because different permutations of labels count as different
elements in some of the label lists for the junctions. The total number of list
elements needed to represent the 505 labelings is 717, and this number
expands to 3,256 when the region illumination information is added to the
labelings.

I have also used the better descriptions to express the restriction that
each scene is assumed to be on a horizontal table which has no holes in it and
which is large enough to fill the retina. This means that any line segment
which separates the background (table) from the rest of the scene can only be
labeled as shown in Fig. 2.18, Because of this fact the number of junction
labels which could be used to label junctions on the scene/background
boundary can be greatly restricted.

2.3.2 Labeling Junctions with IHlumination

Given tables of allowable region illumination values (Fig. 2.16), it is easy to
show how to write a program which expands the data base to include this
information.

In order to include illumination information in the data base, I merely
append the region illumination value names to the name of each label. Thus I
subdivide each label type (except shadow edge labels) into a number of
possibilities. Expanding the number of line labels does not increase the total
number of junction labels as much as one might imagine. (See Fig. 2.17.) The
largest possible number of illumination interpretations for any junction is 3",
where n is the number of junction branches. A number of T junctions actually
have 27 interpretations (for example, this is true of any T made up of three
occluding edges).

A little cleverness is required to avoid duplicate labelings when including
the different permutations of X junctions. This is because some X junctions
give rise to two elements in the X labelings list, while the rest add only one
element. Figure 2.19(b) shows an X junction which requires two elements to
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(a) {b)

D 8 and

are both possible labelings

are both
possibie

labelings,

are not.

to see why, separate the crack labels:

NS

SR
e —

Fig. 2.19

be added to the list, while Fig. 2. 19(c) shows two labelings which each add
Most shadow X junctions give rise to two
elements in the data base, and most junctions without shadows give rise 10

only one element to the data base.

one.

It is now possible to describe how the program handles each j

encounters:

1 If the ]unctlon is an L, ARROW, T,

uniquely orders the junction’s line segmen
the rest as orde

line segment and considering
direction from this line segment).

2. If the junction is a FORK, MULTI, or

segment arbitrarily.

ait of

these are
possible
labelings

for FORKS
and ARROWS

but

neither of
these
labelings
is a
possible
one

K, PEAK, X, KX, or KXX, it
ts (by choosing 2 particular
red in a clockwise

XX, it chooses one line

unction it
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3. It then fetches a list of labels which contains every possible set of
assignments for the lines (excluding the possibilities of accidental
alignments and degeneracies and junctions with missing lines) and
associates this list with the junction.

It makes absolutely no difference whether the program obtains this list
from a table (the compiled knowledge case) or whether it must perform
extensive computations to generate the list (the generated knowledge case).
Similarly, it does not matter at all that various members of the list bear a
particular relation to each other, e.g., as in the case of a FORK junction,
where most elements of the list have two other elements which are
permutations of the element. When I return to the issues of degeneracies,
accidental alignments and missing lines, all I need to show is how the labelings
corresponding to these cases can be added to the appropriate junction lists.
The machinery to choose a particular element operates independently of just
what the labelings actually are.

24 SELECTION RULES

Now that I have shown how to generate a large number of possible labels for
a junction, I will show how to go about eliminating all but one of them. The
strategy for doing this involves:

1. Using selection rules to eliminate as many labels as possible on the
basis of relatively local information such as region brightness or line
segment directions.

2. Using the main portion of the program to remove labels which
cannot be part of any total scene labeling.

2.4.1 Region Brightness

If I know only that line segment L-A-B is a line in a scene, then it can
theoretically be assigned any of the 57 possible labels. Once I know that
L-A-B has an ARROW at one of its ends as shown in Fig. 2.20(b), the
number of possibilities drops to 19. Suppose that I know, in addition, the
relative brightness of R1 and R2 in the neighborhood of L-A-B in Fig.
2.20(c). There are three possibilities:

1. R1 is darker than R2,
2. R2 is darker than R1, or
3. the brightness of R1 is equal to the brightness of R2.

If (1) is true, I know for certain that if L-A-B is a shadow edge, then
R1 must be the shadowed side and R2 the illuminated side. Obviously if (2) is
true, then the opposite holds, i.e., R2 must be the shadowed side and Rl
must be the illuminated side. If (3) is true, then it is impossible for L-A-B to
be a shadow edge at all. (If I happen to also know that each object in a scene
has all its faces painted identically with a nonreflective finish, then I can also
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{a) (b) c

A 0——T——OB A B
57 labels are
possible for L-A-B. D

Only 19 labels
are possible for
L-A-B ifitis
known to be the
middle branch

of an ARROW.
() c (d) c
Rl RI
A B A B
R2
R3 R2
D D
If the brightness If the brightness
is known for R1 of R3 is also
and R2, then no known, then
more than 18 as fewas 5
and as few as and no more
15 labels will . than 18 labels
remain possible. will remain possible.

Fig. 2.20

eliminate more labels. In this case, if (1) is true, then L-A-B cannot be
labeled as a convex edge with region Rl illuminated and R2 shadowed type
sS; if (2) is true, then L-A-B cannot be labeled as convex with R2
Jluminated and R1 shadowed type SS, and if (3) is true, then neither of these
labels is possible.) ‘

2.4.2 Scene/Background Boundary Revisited

It is easy to find all the junctions which can occur around the scene/
background boundary. All that is necessary is to make a list of all the line
segments which can occur along the boundary and then look for segments of
junctions which are bounded by two members of this set.

Junctions which can occur on the scene/background boundary are listed
separately- from junctions which have the same geometry but which cannot
occur on the scene/background boundary. Thus the list of ARROW labels is
divided into ARROW-B, a list made up of those labels which can occur on
the scene/background boundary, and ARROW-I, made up of those which
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The same junctions and edges can border RO as can appear on the
scene/background boundary.

Fig. 2.21

must occur on the interior of a scene. The total list of junctions which can
also appear in the interior of a scene is found by appending ARROW-B to
ARROW-I, since the scene/background labelings can appear on the interior of
the scene as shown in Fig. 2.21. Figure 2.22 lists the number of trihedral
junction labels which can occur on the interior and on the scene/background

Total number of trihedral junction
tabelings which can appear on
Type The The
of interior of scene/
junction ascene background
boundary
L 92 16
ARROW 86 12
T 623 96
FORK 826 26
PEAK 10 2
K 213 2
X 435 72
XX 128 3
MULTI 160 8
KA 20 -
Fig. 2.22 KX 76 8

KXX 121 -
SPECIAL 466 -

° Totals 3,256 245




52  The Psychology of Computer Vision

Edge of
field of view

By appending all the regions which touch the edge of the field of view,

we obtain all of the background except the small regions R4 and R5.

By finding and continuing collinear obscured line segments (Guzman's
matched T's) these regions can be found and added to the background also.

Fig. 2.23

boundary for each type of junction. The assumption that the light source is
positioned in one of the four octants of space above the support surface '
guarantees that the background is an illuminated region.

Obviously, if I can determine which lines in the line drawing are part of
the scene/background boundary, this knowledge can be used to great
advantage. It is, in fact, not difficult to determine this boundary; any of
several strategies will work. Two examples are: (1) look for regions which
touch the edge of the field of view and append them all together, or (2) find
the contour which has the property that every junction lies on or inside it.

Both of these methods require that the scene be completely surrounded
by the background region or regions. As shown in Fig. 2.23, method (1)
works even if the background is made up of more than one region.

Once the program has found which region is the background region, it
can also find how each junction is oriented on the scene/background
boundary. Some junctions always appear in the same orientation; for example,
ARROW and PEAK junctions can only be oriented so that the background
region is the region whose angle is greater than 180 degrees, and K junctions
can only have the region whose angle is 180 degrees as the background region.

Of course there is no way to easily define the orientations of FORK,
XX, or MULTI junctions. However, as shown in Fig. 224, the L, T, X and
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Junction Distinguishable
type orientations
*
T: )
*
TO TI T2
LO : Ll
‘ \ * *
X:
A
X1 X2 X3 X4
* *
KX: ’
KX1 KX2

* indicates background region

Fig. 2.24

KX junctions which appear on the scene/background boundary can be sorted
according to which of their segments is the background region.

Consider Fig. 2.25. Each of the L, T, and X junctions is marked to
indicate which orientation it has. Figure 726 shows that this distinction
makes a significant reduction in the size of the starting list of label
assignments for these junctions.

= -0

Fig. 2.25
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Number of Number of Number if
labelings labelings on scene/
if in the if on the background
scene scene/ boundary and
interior background orientations
boundary distinguished
T: 623 96 —
T0: * - 14
T1: * — 38
T2: * - 38
L: 92 16 -
LO: * - 9
L1: * - 7
X: 435 72 -
X1: * - 8
X2: ® — 28
X3: * - 28
X4: * - 8
KX: 76 8 -
KX1: * — 4
KX2: * - 4

*There is no way to distinguish a preferred orientation in the
interior of the scene.

Fig. 2.26
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Fig. 2.27
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2.4.3 An Example

I have now shown how to use selection rules to narrow down the choices for
junction labels on the basis of various kinds of cues from the line drawing. To
give an idea of how much these rules help, look at Fig. 2.27. Next to each
junction I have listed the numbers of labels which are possible for it before
and after applying the selection rules. I have assumed that the program knows
that RO is the support surface and that the circled numbers in each region
indicate the relative brightness (the higher a number, the brighter the region).
Notice that one junction, the peak on the scene/background boundary, can be
uniquely labeled using only selection rules. Most of the interior junctions
remain highly ambiguous.

2.5 THE MAIN LABELING PROGRAM

You will recall that I described at some length a “filter program” which
systematically removes junction labels whenever there are no possible matches
for the labels at adjacent junctions. Now that I have shown a good deal more
about the junction labels and the use of the selection rules, I would like to
treat this program again from a somewhat different perspective.

2.5.1 An Example

Suppose that the program is working on a scene, a portion of which is shown
in Fig. 2.28. Assume that the selection rules eliminate all labels for each type
of junction except those shown at the bottom of the figure. Remember that
the selection rules operate only locally, i.e., they give the same list of
possibilities no matter how the labeling has proceeded or in what order the
junctions are taken. All the step numbers refer to Fig. 2.29, which summarizes
the successive lists attached to each junction:

Step 1 Suppose that the program starts with J2, and that all of the
other junctions are unlabeled. Then the program assigns list L2 to J2, and
since all the other junctions are unlabeled, it has no basis on which to
eliminate any of the labels in L2. As far as the program knows, all of these
labelings are still possible.

Step 2 Now suppose that it next labels J1 by attaching to it the list L1.
When it checks the junctions adjacent to J1 it now can see that J2 has already
been labeled.

Step 3 Therefore the program looks at J2 to find what restrictions, if
any, have already been placed on line segment L-J1-J2. In this case, the
restrictions are that L-J1-J2 must be labeled with either B or C or A or D or
F, i.e., with any letter which appears third in an element of L2. Each element
of L1 which does not have B, C, A, D, or F as its first letter can then be
eliminated. Therefore the program drops (G H), (E A) and (E B) as possibilities
and L1 becornes
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J3
1 J5
J7

Results of Results of Results of
selection selection selection
rules for J1. rules for J2. rules for J3.
(first element {first element {first element
of each refers to refers to
labeling refers L-J2-J3, second L-J3-J7, second
to L-J1-J2, to L-J2-J5, to L-J3-J6,

second to L-J1-J4) third to L-J2-J1) third to L-J3-J2)

L1 = ((A.B) L2 = ((A B B) L3=((ABA)
cA) (GHI)
(A D) B (F B C)
(B B) {F A D) {DBF)
(8 E) {DBF) (ABE)
© F) (DCE)
(F A)
(G H)
(E A}
(E B))
Fig. 2.28

(AB) (AC) (AD) (BB) (BE) (CF) (FA)

Step 4 Now the program uses this same reasoning in the opposite
direction. In what ways, if any, does the fact that J1 must be labeled from
the list restrict the labels of adjacent junctions? Only J2 of the adjacent
junctions has been labeled so far, so only J2 can be affected. The only labels
which are possible for J2 are those elements of L2 which have as a third letter
A or B or C or F. Therefore, the program eliminates (F A D) as a possible
label’and L2 becomes

(ABB) (ABC) (BCA) (DBEF))



Can the program eliminate any other labels because (F A D) has been
eliminated? No, since no other neighbors of J2 except J1 have been labeled,
and the reason (F A D) was eliminated was because it had no counterpart at

J1.

Understanding Line Drawings of Scenes with Shadows

Step 5 The program now can move on to J3 and label it with L3.

Step 6 Each label for J3 must have a third letter equal to one of the
first letters from a label in L2. These letters are A, B and D. Therefore the
program eliminates (GHI), (FBC), (DBF), (ABE) and (D CG) from L3

and sets L3 to
Labels assigned to
L1 L2 L3
Start - — —
Step 1 - {((ABB)}{ABC) -
(BCA)FAD)
(DBF))
Step 2 ((ABY{ACHAD) {unchanged) —
(BB}(BE)(CF)
(FAMGH)(EA)
(EB))
Step 3 ((AB)(ACHAD) {unchanged) —
(BB)(BE)(CF)
(FA)’
Step 4 {unchanged) ((ABB){ABC) -
{BCA)(DBF))
Step 5 {unchanged) {unchanged) ((ABA)(BCA)
(GHI){FBC)
(DBF){ABE)
(DCE))
Step 6 {unchanged) {unchanged) ((ABA)(BCA))
Step 7 (unchanged) ({(ABB)(ABC)) {unchanged)
Step 8 ((BB}(BE){CF)) {unchanged) (unchanged)
No more labelings can be eliminated
Final
Result ({BB}(BE)(CF)) ((ABB)(ABC)) ((ABA}(BCA))
{
Time

Fig. 2.29
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(ABA) (BCA))

Step 7 What labels now are possible for 727 Since the only remaining
labels for J3 both set L-J2-J3 to A, the program eliminates (BCA) and
(D BF) from L2 so that L2 becomes

(ABB) (ABCQ))

Step 8 This time, a neighbor of J2, namely J1, has been labeled
already, so the program must check to see whether eliminating the element of
12 has placed further restrictions on L1. Only elements of L1 which have a
first letter B or C are possible labels now, so the program eliminates (A B),
(A C), (AD), and (F A). L1 thus becomes

(BB) (BE) (CH)

Since no other neighbors of J1 are labeled, the effects of this change
cannot propagate any further.

2.5.2 Discussion

I think it is easiest to view the process of the program at each junction as
having three actions:

1. attaching labels,

2. removing any of these labels which are impossible given the current
context of this junction, and

3. iteratively removing labelings from the context by allowing the new
restrictions embodied in the list of labels for the junction to
propagate outward from the junction until no more changes in the
context can be made.

There are two points of importance:

1. The solution the program finds is the same no matter where it begins
in the scene, and

2. the program is guaranteed to be finished after one pass through the
junctions, where it performs the three actions listed above at each
junction.

Given a line drawing with N junctions, a data base which has no more
than M possible labelings for any junction, and a situation where any number
of junctions from O to N have already been labeled, let condition C be one
where for each possible line label which can be assigned to a line segment
either

1. there is at least one matching line label assigned to the junction at

* the other end of this line segment, or else

2. the junction at the other end of the line segment has not been
labeled.
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Condition C must be satisfied before the program moves on to a new
junction; the program keeps track of the line segments on which the condition
may not be satisfied. '

When the program begins labeling a junction J, assume that C holds
throughout the line drawing. When the junction, previously unlabeled, has
labels added, the only line segments along which C can be violated are the line
segments which join J to its neighbors, and it is possible for C to be
unsatisfied in both directions on these segments (i.e., both J and J’s neighbors
may have unmatched line labels). Therefore, to make sure that the program
needs to consider each line segment a minimum number of times, the program
first uses the lists of possible labels specified by J’s neighbors to eliminate all
impossible labels from J.

To see why this is the correct way to proceed, suppose that the program
used J’s initial set of labels to eliminate some labels from one of J’s neighbors,
J1. It is then possible that the set of labels for J can be reduced further
because neighbor J2 has no match for one or more labels still attached to J.
The program would then have to go back to line L-J-J1 again to see whether
more labels could be eliminated from J1. By considering the effects of each of
J’s neighbors on J’s labels first, the program guarantees that as many labels as
possible have been eliminated from J’s label list before using this list to
recompute the lists for J’s neighbors.

Condition C can now only be untrue along line segments joining J with
its neighbors and, moreover, can only be untrue in one direction, ie., I’s
neighbors may have unmatched labels, but not vice versa. When the program
eliminates the unmatched labels from each of J’s neighbors, C is now satisfied
on each line segment joining J to its neighbors and C can only be unsatisfied
along the line segments joining J’s neighbors with the neighbors of J’s
neighbors, and again only in an “outward” direction, i.e., the junctions two
line segments away from J can have unmatched labels, but all those junctions
one line segment away (J’s neighbors) cannot have unmatched labels.

The line segments on which C does not hold continue to spread outward
to the neighbors of junctions two segments away from J, then junctions three
segments away from J, etc., but only as long as labels are being removed from
any junctions. As soon as the program reaches a step where no labels are
removed from any junction, then the program knows that condition C must
be satisfied everywhere in the scene, and it can move on to the next unlabeled
junction.

The violations of C can spread outward to eventually touch any line
segment of a line drawing, but only if the number of labels can be reduced at
- each junction on some path between the junction the program is currently
labeling and the line segment.

One final point: the process is guaranteed to terminate, since if there are
N junctions and no more than M labels possible for any one junction, the
process can never go on for more than M X N steps at the very worst. This is
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important since the restrictions can propagate back to the junction which
initiated the process. To see that the possibility of cycles does not create any
difficulties, consider the following trick. Suppose that as soon as the starting
junction has been checked against each of its neighbors, that all the remaining
labels are removed from it. The restrictions can then spread outward only
until no more changes can be made; now look at the process as though the
junction were being labeled for the first time with the set of junctions just
removed as its starting junction set. This process can then be repeated as often
as necessary, but the number of times can never be greater than the initial
number of labelings assigned to the junction, since the process terminates if
no more labels can be removed from the list of possibilities.

2.5.3 Control Structure

While the program can start at any junction and still arrive at the same
solution, the amount of time required to understand a scene does depend on
the order in which the junctions are labeled. The basic heuristic for speeding
up the program is to eliminate as many possibilities as early as possible. Two
techniques which help accomplish this end are to

1. label all the junctions on the scene/background boundary first, since
these have many fewer interpretations than interior junctions do, and

2. next label all junctions which bound regions that share an edge or
junction with the background.

I mentioned at the beginning of this paper that the amount of time (and
therefore computation) is roughly proportional to the number of line
segments in a scene. This may not seem to fit with the obvious fact that there
is really nothing to prevent the effects caused by labeling a single junction to
propagate to every portion of a line drawing. :

There are good physical reasons why this seldom happens. The basic
reason is that some junctions simply do not propagate effects to all their
neighbors, and so the effects tend to die out before getting too far. The prime
type of junction which stifles the spreading effects is the T junction. -

In most T junctions, the labelings of the upright and crossbar portions
are independent. Even if we know the exact labeling of the crossbar portion
we are unlikely to be able to draw any conclusions about the labeling of the
upright and vice versa. Since objects are most commonly separated by T
junctions, the effects of labeling a junction are for the most part limited to
the object of which the junction is a part and to the object’s shadow edges, if
any.

Another reason why effects do not propagate far is that when junctions
are unlabeled or when they are uniquely labeled, they do not propagate
effects at all. Thus when few junctions are labeled and when most junctions
are labeled the effects of adding restrictions tend to be localized.
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2.5.4 Program Performance

The program portions I have now described are adequate for labeling scenes
without accidental alignments, nontrihedral vertexes or missing lines. Within
this range there are still certain types of features which confuse the program,
but before showing its limits, I will show some of its complete successes. In
all the scenes which follow, I assume that the program knows which region is
the background region, and that it also knows the relative brightness of
various regions. The program operates nearly as well without these facts but
not as rapidly. Figure 2.30 shows a number of scenes for which the program
produces unique labelings or is only confused about the illumination type of
one or two regions as in Fig. 2.30(d) and (7). By varying some of the region
brightness values or omitting them, the program could also be confused in a
similar way about the tops of objects in Fig. 2.30(a), (), (e), (g), and (k). In
general, the program is not particularly good at finding the illumination types

(b)

(c)

Fig. 2.30
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(a)

(b)

Fig. 2.31

for regions unless the regions are bounded by one or more concave edges. This
confusion has a physical basis as well. In all these diagrams I have drawn the

"top surfaces as though they were parallel to the table so they all should be

labeled as type I (illuminated), but since the program I have described so far
uses only the topology of the line drawings, it has no way to distinguish the
scenes I have drawn from other topologically equivalent scenes which should
be labeled differently. For example, in Fig. 2.31 1 have redrawn (@) and (b) so
that the top surfaces are type SS (self-shadowed), but the figures are
topologically identical.

2.5.5 Performance Problems

Shadows convey a considerable amount of information about which edges of
ar object touch a surface since a shadow edge can only intersect the edge
which causes it if the surface the shadow is cast on touches the shadow-
causing edge as shown in Fig. 232(a). As long as shadows are present, a
program can find relations between the objects in a scene and the background,
as showp in Fig. 2.32(b). However, if there are no shadows, then it is
impossible to decide how the pieces of a scene are related. For example, in
Fig. 2.32(c) the block on the left could be stuck to a wall, or sitting on a -
table, or sitting on a smaller block which suspends it off the table; there is
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simply no way to tell which of these cases is the true one given only a
shadow-free line drawing. Moreover, the program does not use (at this point)
knowledge of the line segment directions in a scene, so it cannot even
distinguish which way is up. If you turn Fig. 2.32(c) about one-third of a turn
clockwise, there is a reasonable interpretation of the two blocks where A is
supported by B. Without line segment direction information the program finds
all these interpretations in the absence of shadows.

{a)

*

In these scenes the starred junctions provide evidence the two
objects or the object and table touch:

(b}

In these scenes the starred junctions provide evidence that the
two objects or the object and table do not touch.

‘°’ A

RS

In these scenes there is no evidence to use to relate the objects
to each other or to the table; it is not possible to decide
whether they touch or not.

Fig. 2.32
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In Fig. 2.33, each of the segments marked with a star can be interpreted
either as an obscuring edge or as a concave edge, though in most cases
choosing one or the other for some line segment forces other segments to be
interpreted uniquely, as shown in Fig. 2.33(b) and (¢). To show why the
program finds all these labelings as reasonable interpretations, I have
constructed the five scenes in Fig. 2.34 to be topologically identical to the
scenes in Fig. 2.33(c); this time, however, the labelings shown seem at least
plausible if not the most reasonable.

Figure 2.35 shows another problem case. Such a case occurs when we
can only see enough of an object so that it is not possible to tell whether the
region is a shadow or an object. If it happens that the ambiguous region is
brighter than the background (or what would be the illuminated portion of a
partly shadowed surface if the feature occurs on the interior of a scene), then
the program can eliminate the possibility that the region is a shadow.
Unfortunately, if the ambiguous region is darker than its neighbor, the
program cannot tell whether the region is a shadow or a dark object. In Fig.
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Fig. 2.34
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2.35 do you think that both A and B should really be labeled as shadow
regions? In fact neither A nor B can be shadows! You can prove this for
yourself by finding the characteristic light source slope for the scene, using
the front object and its shadow. Then note that there can be no hidden
objects which could project A and B.

The labelings which the program finds must be made up of local
features, each one of which is physically possible, but it is not obvious that
the features which remain should each be part of a total labeling of the scene
which is physically possible. After all, the only conditions I impose are that
each of these features must agree with at least one other feature at each
neighboring junction. On the basis of the fact that the main labeling program
does not leave extraneous labels on junctions, it seems clear that topology
provides a major portion of the cues necessary to understand a scene.

s B
P

According to the program A and B can be labeled as follows:
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In the next section I show some heuristic rules which can be used to
eliminate some of the labelings which people usually consider unlikely. In fact
the true case is that these labelings are not unlikely, but the scenes which
have these labelings as reasonable ones (to our eyes) do not often arise in our
experience. Unfortunately, heuristics sometimes reject real interpretations, and
indeed would reject each of the interpretations shown in Fig. 2.34 in favor of
the ones in Fig. 2.33(b). Nonetheless, in the absence of solid rules, these
heuristics can be useful. In the last section I will deal with techniques which
enable a program to find the labelings which we would assign to these line
drawings without resorting to heuristics.

26 NONTRIHEDRAL VERTEXES
AND RELATED PROBLEMS

So far I have assumed that all the junctions I am given are normal trihedral
junctions and essentially that the line drawing which I am given is “perfect.”
When a program has to be able to accept data from real line finders and from
aribitrarily arranged scenes, these criteria are rather unrealistic.

In this section, I show how to correct some of these problems in a
passive manner. By passive I mean that the program is unable to ask a line
finding program to look more carefully or to use alternative predicates at a
suspicious junction, and similarly that it cannot move its eye or camera, or
direct a hand to rearrange part of a scene.

Instead I handle these types of problems by including labels for a
number of the most common of these junctions in the regular data base. In
cases where the program confuses these junction labelings with the regular
labelings and where I want a single parsing, I can easily remove these new
types of junction labels first, since I have included special markers for each
labeling of this type. Moreover, depending on the reliability of the program
which generates the line drawing, I may wish to remove labels in different
orders. For example, if a line finding program rarely misses edges, missing
edge interpretations can be removed first; if a line finding program tends to
miss short line segments, then accidental alignments are probably being
generated by the program, and these interpretations can be retained until last.
Therefore the labels for each type of problem are marked with different
indicators in the data base.

2.6.1 Nontrihedral Vertexes

Some nontrihedral vertexes must be included in the data base; indeed some
are much more common than many of the trihedral vertexes. I will limit the -
number by including only those nontrihedral vertexes which can be formed by
convex trihedral objects.

The first type of vertex is formed by the alignment of a vertex with a
convex edge as shown in Fig. 2.36(z) and (). In Fig. 2.36(c) a similar set of
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{a)

(b)

{c)

(d)
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junctions is shown for objects which MARRY (i.e., have coplanar faces
separated by a crack edge; see Winston®) along one edge, but which have
different face angles. '

Figure 2.36(d) illustrates another common nontrihedral vertex which
again results from objects with dissimilar face angles. This time I need a new
type of edge (a separable convex edge) labeled as shown in that figure.

Figure 2.36(e) illustrates the types of non-trihedral vertexes which can
occur when one block leans on another. In order to keep these cases from
being confused with other trihedral junctions, I have introduced three new
edge types. These types only can occur in-a very limited number of contexts.

In the data base each of the labelings of the types shown in Fig. 2.36,
and any other junction labels involving the leaning edges or the separable
convex edges, are marked as nontrihedral. Later, if I wish to find a single
parsing for a scene where there are still ambiguous labels, removing these
noatrihedral junctions, if possible, may be a good heuristic.

2.6.2 Accidental Alignments (First Type)

In this section I have not attempted to exhaustively list every possible
junction labeling which results from accidental alignment, but have concen-
trated on including only the most common cases. There is some justification
for this, in that ambiguities caused by accidental alignments can be resolved by
simply moving with respect to the scene.

Figure 2.37 lists all the junctions which can take part in the first type
of accidental alignment I will consider. This type of alignment occurs when a
vertex is closer to the eye than an edge which appears to be but is not part of
the vertex. Thus the set of vertexes in Fig. 2.37 is exactly that subset of the
scene/background boundary junctions which contain only obscuring edges on
the scene/background boundary. Figure 2.37 shows only those junctions
which I include as sufficiently common. The rest are excluded because they
involve unusual concave geometries like those found in Soma cube pieces
(Soma cubes are the three-dimensional puzzles manufactured by Parker Bros.,
Inc., Salem, Mass.) or because they involve three-object edges or because the
resulting junction would have enough line segments to require a designation of
SPECIAL or because the junction would require the alignment of the eye with
three points in space.

At this writing, I have not included all these accidental alignment types
in the program’s data base, but I have included most of the scene/background
boundary cases and a number of the interior cases. In general, I have assumed
that no nontrihedral edges or three-object edges will be among those obscured
since both the alignment itself and the edge types are relatively unlikely, so
their coincidence at a single junction is extremely unlikely.
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Junctions which are used to make up accidental
alignment list

5 b

2B A A
S

(Extra edges are in starred regions)

Fig. 2.37

26.3 Accidental Alignment (without Obscuring Edges)

Figure 2.38 shows some alignments which have shown up frequently in scenes
I have worked with. These junctions have occurred because (1) our line
finding program misses short line segments (and therefore tends to include
more lines than it should in a single junction), (2) our line finding program
has a tolerance angle within which it will call edges collinear, so some edges
are called collinear even when they are not, and (3) edges which lie in a plane
parallel to the surface on which they cast shadows are parallel to the shadows
they cast, so that alignments become particularly likely when we use bricks,
cubes, and prisms.
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Fig. 2.38
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2.6.4 Accidental Alignments (Third Type)

The worst type of accidental alignment, in terms of the number of new
junctions it can introduce, occurs when an edge between the eye and a vertex
appears to be part of the vertex. Fortunately, all of the types of junctions
which these alignments introduce are either Ks, KAs or SPECIALs. To see
why this is so, look at Fig. 2.39. All these labelings can be quite easily
generated by a program which operates on the regular data base. Notice that
for each obscured vertex labeling three new labelings are generated since the
near region can have any of the three illumination values.

Also notice that any of these junctions which appear on the scene/
background boundary can only be oriented with the background in a junction
segment type K1,K2, K3, KA1, KA2,KA3, or KA4. (See Fig. 2.40.) Therefore it
is not difficult to recognize the cases where accidental alignments of this type
occur on the scene/background boundary since none of the regular trihedral
junctions can ever appear on the scene/background boundary in any of these
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If the Then the possibie accidental alignments
vertex is with an edge are
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If the
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Then the possible accidental alignments
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KI KAl

KA2

KO K2 KAO

KA3

K3 KA4

Fig. 2.40 Default condition.

orientations. (The background can only appear normally in segments of type
KO of KAO.)

2.6.5 More Control Structure

In this section I return again to the main labeling program and describe what
happens when the program is unable to label a scene consistently, using the
set of labels with which it has been equipped.

If a junction cannot be labeled from the normal set, instead of marking
it unlabelable 1 generate possible labelings by modifying the line drawing so
that it contains equivalent junctions which are not accidentally aligned, and
then I label these junctions in the normal manner. Thus, as shown in Fig.
241, if the normal set of junctions is inadequate to label a K, the most
reasonable alternative is that the junction is actually an obscured L vertex.
Therefore I change the line drawing (saving the original of course) and try to
label the new line drawing. This change is equivalent to moving the eye
slightly to see what type of junction is obscured, except that since the
program is unable to move its eye and therefore does not know what the real
vertex type is, it keeps trying various alternatives until one works, or until it
hits a default case. In the example shown, the program finds a reasonable
interpretation on the first try. If it had not, then the program would next
have tried to label the junction as an obscured ARROW, since ARROWs are
the next most common type of junction after Ls.

This solution is not guaranteed to contain the correct one; the program
will be satisfied with the first set of modifications for the K and KA junctions
which gives a complete labeling. To be certain of including the correct
solution, the program would have to try every combination of interpretations
for every K and KA and save all the ones which give complete labelings.

I have lumped a number of junction types together into a default case
for two reasons: this lessened the possibility of stopping before getting the
desired ““correct” solution, and it enabled the program to run much faster and
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This K junction cannot be labeled from the normal labelings list
for Ks. Therefore the program modifies the line drawing, assuming
that the K is really an obscured L, and now the line drawing can
be labeled.

Fig. 2.41

required a much smaller program than would have been needed if I had
included separate machinery for each type of junction. The program tries the
possibilities for a K in the following order:

1. Try to label the K from the normal label lists.

2. Try to label the K as an obscured L vertex.

3. Try to label the K as an obscured ARROW vertex.

4. If all these fail, label the K as two T junctions. (See Fig. 2.42.)

The default condition represents the exact opposite of the previous
conditions. The two Ts result if, instead of moving the eye (by imagination)
to see what vertex is behind the obscuring edge, the program moves its eye
(by imagination) to completely cover the vertex and eliminate the accidental

Default condition
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alignment. Notice that the default condition gives much weaker constraints
than could be obtained by trying all the rest of the junction types explicitly.
The only relation that must hold for the two T uprights is that the region
between them (marked R in Fig. 2.42) have an illumination value which
matches both uprights. Nontheless this is a much stronger condition than is
imposed by leaving the junction totally unlabeled and, in addition, the
collinear segments (L-A-B, L-B-C, L-C-D in Fig. 2.42) can all be labeled
unambiguously as occluding edges. The information I throw away requires
that the two uprights be adjacent segments of the same vertex, where this
vertex can presumably be labeled from the normal label lists.

2.6.6 Missing Edges

Missing edges usually occur when the brightness of adjacent regions is nearly
the same, since most line finding programs depend heavily on steps in
brightness to define edges. I have made no attempt to treat missing edges
systematically, but have only included a few of the most common cases in the
data base. Clearly missing edge junction labels could be systematically
generated by a program merely by listing all possibilities for eliminating one
edge from each junction label. This procedure would generate (n— 1) X (old
number of regular labels) for each junction type (where n is the number of
line segments which make up the junction), and clearly this would be a
rather unmanageable number of new labels. The number of new labels could be
lessened somewhat by noting that certain types of edges such as cracks are
likely to be missed, whereas certain other edges such as shadows are relatively
unlikely to be missed.

Even if a program such as mine can recognize that a junction must be
labeled as having a missing edge, problems still remain about exactly how the
line drawing should be completed. This difficulty is illustrated in Fig. 2.43.
Depending on the line segment directions and lengths, the missing edge
junction D can be connected to vertex A, vertex B or vertex C, even though
the topology of all the line drawings is identical.

The missing edge junctions which are included in the program’s data
base are all L junctions which result from deleting one of the branches of a
FORK junction with three convex edges.

A rule which can be helpful in removing impossible missing edge
interpretations is that if a region is bounded by only one junction which can
be interpreted as having a missing edge in that region, then that missing edge
interpretation is impossible. (There must be another junction to connect with
the missing edge.) A similar rule depends on including the label that the
missing edge would have had in each missing edge labeling. In this case, the
rule is that.not only must there be a pair of missing edge junctions around a
region in order for either of them to be possible, but this pair must also
match in the label that each gives to the missing edge. One final rule is that
the previous rules only hold if the pair of missing edge junctions are not
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Topologically equivalent ‘ Most “reasonable’”
line drawings with missing completions
lines

>

Fig. 2.43

adjacent to one another (i.e. each pair of junctions can be connected by only
one straight line).

2.6.7 Heuristics

As I have mentioned earlier in several places, the program is able to remove
junction labels selectively according to a crude probability measure of the
relative likelihood of various individual feature interpretations. These heuristics
are a poor substitute for foolproof rules; in essence I view the heuristics as an
expedient method for handling problems I have not yet been able to solve
properly. As 1 explained earlier, these heuristics may nonetheless be of
considerable value in guiding programs which find sound solutions.

There is not much to say about the heuristics themselves. The ones I am
using currently lump all the “unlikely” junction labels into one class, the
“likely” ones_into another, and simply eliminate all the “unlikely” labels as
long as there are “likely” alternatives.
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(a) Shadow L junctions (b) Contact ARROW junction

+

RN

However there are some interesting cases where I have found that I can
usually handle the problem scenes.

Heuristic 1 Try to minimize the number of objects in a scene
interpretation.

Implementations:

1. Make shadow L junction labels (Fig. 2.44[a]) more likely than any
other type of L junction.

2. Make labels representing interior table regions more likely than the
equivalent labels that do not involve table regions.

3. If regions can be interpreted either as shadows or as objects, make
shadow interpretations more likely.

Fig. 2.44

Heuristic 2 Eliminate interpretations that have points of contact
between objects or between objects and the TABLE unless there is solid
evidence of contact.

Implementation: Make ARROW junction labels which have two concave
edges and one convex edge (Fig. 2.44(b) less likely than ARROW labels of
other types.

These heuristics select interpretations (1), (2), and (7) from Fig. 2.33
and interpretations A(1) and B(1) from Fig. 2.35.

2.7 REGION ORIENTATIONS

What has obviously been missing from all that I have shown so far is a
connection between line segment directions on the retina and possible
labelings for these lines. Such a connection is extremely useful if the program
is to understand gravity and support. In this section I describe approaches to
this problem which I have not yet included in my program. There is probably
as much work required to properly add the ability to handle direction
information as I have already invested in my program. Nonetheless, I believe
that this section provides a good idea of the work that needs to be done as
well as the physical knowledge that these additions will allow one to include
in the program.
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2.7.1 General Region Orientations

In this section I define another scheme which assigns to each visible region
one of 16 values. The regions are named in as sensible and simple a manner as
I could devise, and are defined with respect to a coordinate system which is
itself defined by the TABLE surface and the position of the eye viewing the
scene. The region orientation values are each shown in Fig. 2.45. I assume
that this figure will serve as an adequate specification for the meaning of the
different orientation values. If the scene is moved with respect to the eye or
vice versa, then the region values (except table and horizontal) may change,
and regions previously invisible may become visible. Thus the region
orientation values are not inherent properties of the surfaces, but are only
defined with respect to a particular eye-table arrangement.

(D Table (TA)
(@ Horizontal
(@ FRV (front right vertical)
(@ FLV (front left vertical)

I TA
4 FLV

(®) FRU ( front right up)
(® BLU (back left up)

i TA
3 FRV

@ FLU (front left up)
BRU { back right up)

I TA
® LU (left up)

RU (right up) @
@ FU ( front up) l
(12) BU (back up)

ll

Fig. 2.45
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I TA
2 H 2
3 FRV
4 FLV 4 7 5
@ FV (front vertical) @ '
' l
| TA
2 H
3 FRV
4 FW
FLD ( front left down)
~ =
(i5) FRD (front right down) ~
2
I TA
2 H 4 e
3 FRV égt
4 FLV (i

FD ( front down) 1 <

Fig. 2.45 (continued)

2.7.2 General Line Directions

Before I can carry out this type of association in general, I must

1. define line directions on the retina

2. define line directions in the scene domain

3. show how to find the scene direction values, given a labeled line
drawing and the retinal line directions

Throughout this section I assume that the eye is far enough away from
the scene so that vertical edges in the scene project into North/South lines on
the retina. Since the definition of North/South edges includes a tolerance
angle, the eye does not need to be at infinity for this condition to hold. By
the same reasoning I assume that parallel edges can be recognized without
resorting to perspective or vanishing point considerations.

First I define the retinal line directions in terms of compass points as
shown in Fig. 2.46.

Next, in Fig. 2.47, I define the names for the directions of lines in the
scene by showing examples for each type possible direction. These names
resemble the names for region orientations, but I will always use lower case
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letters in referring to the line names and will use upper case letters when I
refer to the region names.

Now to make the connections between the retinal and scene line
directions, note that I can catalog all the possible edge directions in the scene
domain which can map into each of the direction values on the retina. As an
example of how to do this, in Fig. 2.48 I show all the edge directions possible
for an edge which bounds a type FRV region. The diagrams in this illustrate
that an NE (Northeast) line on the retina which bounds a type FRV region
can be an edge of types bru, bip, or brd, that an E (east) line on the retina

fip/brp
( front left paraliel /
back right parallel )

frp/blp
( front right paraliel/
back left parallel )

fru/bid
{ front right up/
back left down)

frd /blu
{ front right down /
bock left up)

fid/ bru
( front left down/
back right up ):

flu/brd
( front left up /
back right down)

Fig. 2.47
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Ip/rp
(left parallel/
right parallel ) Ip
fo/bp e ™} fop ™
{ front parallel / = fp\ bp
back parallel) [FLE= P; fbp Ip
vu/vd fpl o =—+
( vertical up/ E=vdf i 4 T
vertical down) =¥ {wu [BRlCK] v l vu
frp\\
Ip
p
fu/bd Ip
( front up / —
back down) ‘ﬂy fbd rp'p fu\\ (side view)
fd /bu gt -
{ front down / b“i: P @ >
a3
frp\‘
ip
™
Ip
viu/vrd e
{vertical teft up / T viu
vertical right down) fpl b | fpl pr N
P vrd
P bp
le ‘vu vrd ‘\\(\lu
| LN
"
vid/ vru L
(vertical left down/ vid =
] . P
vertical right up) A%'f pl pr | fpl ‘bp
—P
fpl I b 4 —
™
vdl f
. vru p v
14

Fig. 2.47 (continued)
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SEINEANE

NEI: bru NE2: brp NE3: brd
@ @
E: brd SE: brd S:vd

swi: fid Sw2:flp | SW3:- flu
w: fiu NW: fiu N:vu
Fig. 2.48

which bounds a type FRV region can only be caused by a type brd edge, etc.
Figure 2.49 is a summary of the types of scene edges which can cause lines of
each type on the retina, arranged according to the types of regions that each
edge can bound.

Now to tie everything together, notice that an edge can only separate
two regions if the edge could have the same direction in both regions
bounding the edge. Therefore, to find all the region pairs that an N (North)
edge (as seen on the retina) could separate, look down the N column in Fig.
949 and find all the pairs of regions which can share an edge which points in
a particular direction. A north pointing edge can thus separate any of the
following pairs of region types (this is not a complete list):
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Direction of line on retina
Region
type § N NE E SE s SW w NW
Hor TA bp brp rp frp fp fip Ip blp
FU bu bru rp frd fd fid Ip blu
FV vu vru p vrd vd vid Ip viu
FD fu fru g0} brd bd bld Ip flu
bru brd fid . flu
FRU bu brp brd vrd fd flp flu viu
brd frd flu biu
bru fild
FRV vu brp brd brd vd flp fiu flu
. brd fiu
fru, vru bld, vid
FRD fu brp, bru brd brd bd fid, flp flu flu
brd flu
brd fiu
RU bp brd brd vrd fp flu flu viu
frd blu
brd, vrd flu, viu
BRU bd brd brd frd, frp fu fiu fiu blu, bip
fru bid
BU bd brd p fru fu flu Ip bid
brd, brp flu, flp
BLU bd bru, vru fru fru fu fid, vid bld bld
fru bld
bru fild
LU bp vru fru fru fp vid bid bid
fru bid
bru fru fid bid
FLU bu vru fru frp fd vid bid blp
fru frd bld blu
fru _ bld
FLV vu fru fru frp vd bid bid bip
frd biu
fru, frp bid, blp
FLD fu fru fru frd, vrd bd bld blid biu, viu
brd flu

Fig. 2.49
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((TATA) (HH) (TALU) (HLU) (HRU)
(RUTA) (RUH)
(FRV FRV) (FRV FLV) (FRV FV)
(FLV FRV) (FLV FV) (FLV FLV)
(FV FV) (FVFLV) (FV FRV)
(LUH) (LURU) (LU LU)
(RUH) (RULU) (RU RU)
(BLU BRU) (BRU BLU))
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Not all these pairs can be separated by the same types of edges; shadows

A program can use this information in the following ways:

and cracks can only separate regions with the same orientation values, and
convex edge pairs become concave edge pairs if the order of the pairs is
reversed. For example, a North line separating regions with orientation values
(FLV FRV) represents a convex edge (where the ordering of the regions is in
a clockwise direction), but if the orientation values are (FRV FLV) for a
North line, this must represent a concave edge.

1. If there are ambiguities remaining after the regular labeling program
has finished, pick a single labeling, assign region values and see
whether this labeling can represent a possible interpretation; if the
interpretation is not possible, then the program will be unable to

assign orientation values to every region.

2. Region illumination values can be tied in with the region orientation
values. For example, if a scene is lit from the left, and the light-eye
angle is less than 90° (in Fig. 2.50, the light-eye angle is the angle

Projection of

l light onto
T Ij / table plane

£
-~ X_ Projection of
eye onto

table plane

Fig. 2.50
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between the projections of the eye and the light onto the plane of
the TABLE, as measured from the center of the scene), then a region
cannot be labeled simultaneously as orientation type FLV and
illumination type SS (self-shadowed).

3. All these facts provide a neat way to integrate stereo information
into a scene description. For example, if an edge is truly vertical
(type vu) then it must appear as N (North) in any retinal projection
of a stereo system. However an edge which is of type bp (back
parallel) can appear to be N on the retina because of the particular
placement of the eye with respect to the scene. If the eye is shifted
slightly to the right, this edge will now appear to point NE
(Northeast) and if the eye is shifted to the left, the edge will appear
to point NW (Northwest). Clearly this knowledge would enable a
program to much more severely restrict the region orientation pairs,
and consequently the labelings, that can be assigned to a line drawing
of a scene.

4. All the possibilities for region orientations can be generated by the
function I use to build up sets of region illumination values. For each
labeling which the program finds, region pairs can be selected
according to the line directions and line labels, and a set of region
orientation values can be built up. The difference is that there are far
too many region orientation values in general to possibly include
them in precompiled form; the values must be generated from the
greatly reduced set of possibilities that remain after the regular
labeling program has completed its work. The reason why there are
so many possibilities is that there are so many possible region
orientations. Each edge can potentially have 16 X 16 =256 region
orientation pairs as opposed to the nine possible region illumination
pairs.

2.7.3 Support

Using the region orientation values, I can now define the set of edges along
which support must hold, the set of edges along which support can hold, and
the set of edges along which support cannot hold. By support I mean what is
commonly termed either resting on or leaning on.

To start with, I can eliminate from consideration any edges which are
shadows, convex edges, obscuring edges, or concave edges made up of one
object or of three objects, and I can say for certain that support is exhibited
along any concave edge which has the TABLE as a bounding region.

The important fact is that these edges exhibit support regardless of their
directions on the retina, so that there is no problem with edges such as L-A-B
in Fig. 2.51. The best previous rules to find where support holds in a scene
(Winston®) are not able to handle cases like this; Winston’s rules were biased
toward finding ARROWs, Ks, and Xs which have vertical (or at least upward
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pointing) lines. In addition, Winston’s rules failed to find support relations for
leaning blocks; his rules assumed that objects would be supported by face
contact only.

Although my program can find support in cases like Fig. 2.51, it is
important to note that, in general, it is not possible to use my regular
labelings and line directions alone to find which edges exhibit support and
which do not. Suppose that on the basis of the frequency of crack edges like
the ones shown in Fig. 2.52(z) I decided to label as supporting/crack edges
ones in which the arrow of the crack label points SW, W, or NW, and to class
all the others together as being crack edges without support relations. Then in
Fig. 2.52(b) edges L-B-C and L-C-D would be correctly marked but L-A-B
would not. I could patch up the rule by saying that if support holds for one
noncollinear line in an X junction it must hold for the other noncollinear line
of the X as well. Unfortunately this rule causes the program to assert that
support holds between the two objects in Fig. 2.52(c) since support would be
transferred by the rule from L-B-C to L-A-B.

Similarly, for concave edges I cannot use line directions and the direction
of the arrow on the label to define support. As an example, observe that
while L-A-B in Fig. 2.52{d) does not exhibit support, L-C-D in Fig. 2.52(e)
does.

Region orientation values can help to avoid these problems, at least for
some cases. (There are some cases, such as the one in Fig. 2.52[f], where I do
not know whether to say that support holds along L-A-B and L-B-C or not.)
Interestingly enough, with region orientations specified, I do not necessarily
need line directions, although I certainly need line directions to find the
region orientation values to begin with.

An example of an edge where support must hold is any concave edge
which has a horizontal surface on its left when one looks along the edge in
the direction of its “arrow”, as does L-C-D in Fig. 2.52(e).

Some examples of edges where support cannot hold are concave edges
which have vertical surfaces (FRV, FV, or FLV) or downward pointing




90 The Psycholegy of Computer Vision

{a)

{b)

(c)

(d)

(e}

(f)

Fig. 2.52




e e i

Understanding Line Drawings of Scenes with Shadows 91

surfaces (FRD, FD, or FLD) on the left of the edges when looking along the
direction of the “arrow”; line L-A-B in Fig. 2.52(d) is an edge of this type.
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